新闻资讯
看你所看,想你所想

拉普拉斯展开

拉普拉斯展开

拉普拉斯展开

在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。

基本介绍

  • 中文名:拉普拉斯展开
  • 外文名:Laplace expansion
  • 所属领域:数学
  • 又名:拉普拉斯公式
  • 相关术语:拉普拉斯定理
  • 套用学科:数学

定义

在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个
矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的 n个元素的
余子式的和。行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵Bnn列,它的拉普拉斯展开一共有 2n种。拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。

公式

B= (bij)是一个n×n矩阵。B关于第i行第j列的余子式Mij是指B中去掉第i行第j列后得到的n−1阶子矩阵的行列式。有时可以简称为B
余子式。B
代数余子式Cij是指B
余子式Mij与(−1)的乘积:
Cij= (−1)Mij
拉普拉斯展开最初由范德蒙德给出,为如下公式:对于任意i,j∈ {1, 2, ...,n}:
考虑以下的矩阵:
这个矩阵的行列式可以用沿着第一行的拉普拉斯展开式来计算:
也可以用沿着第二列的拉普拉斯展开式来计算:
很容易看到这个结果是正确的:这个矩阵是奇异的,因为它的第一列和第三列的和与第二列成比例,因此它的行列式是零。

证明

B是一个
的矩阵,
。为了明确起见,将
的係数记为
,其中
考虑B的行列式|B|中的每个含有
的项,它的形式为:
其中的置换τ ∈Sn使得τ(i) =j,而σ ∈Sn-1是唯一的将除了i以外的其他元素都映射到与τ相同的像上去的置换。显然,每个τ都对应着唯一的σ,每一个σ也对应着唯一的τ。因此我们创建了Sn−1与{τ∈Sn:τ(i)=j}之间的一个双射。置换τ可以经过如下方式从σ得到:
定义σ' ∈Sn使得对于1 ≤kn−1,σ'(k) = σ(k)并且σ'(n) =n,于是sgnσ' = sgn σ。然后
由于两个轮换分别可以被写成
个对换,因此
因此映射σ ↔ τ是双射。由此:
      从而拉普拉斯展开成立。

      相关定理

      拉普拉斯定理
      拉普拉斯在1772年的论文中给出了行列式展开的一般形式,现在称为拉普拉斯定理。拉普拉斯定理建立在子式和余子式的基础上,说明了如果将B关于某k行的每一个子式和对应的代数余子式的乘积加起来,那幺得到的仍然是B的行列式。定理的证明与按一行(一列)展开的情况一样,都是通过建立置换间的双射来证明两者相等。

      相关推荐

      声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com