
傅氏级数
傅氏级数即傅立叶级数。法国数学家傅立叶发现,任何周期函式都可以用正弦函式和余弦函式构成的无穷级数来表示(选择正弦函式与余弦函式作为基函式是因为它们是正交的),后世称为傅立叶级数(法语:série de Fourier,或译为傅立叶级数)。傅立叶级数在数论、组合数学、信号处理、机率论、统计学、密码学、声学、光学等领域都有着广泛的套用。
基本介绍
- 中文名:傅氏级数
- 外文名:série de Fourier
- 全名:傅立叶级数
- 发现人:傅立叶
- 套用:信号处理等
- 傅立叶变换:属于谐波分析
普通形式
傅立叶级数的普通表达形式
假设{a0, a1, a2, a3, ..., an, ...}和{b1, b2, b3, ..., bn, ...}是一组无穷的常数。这些常数被称为傅立叶係数。x是一个变数。普通的傅立叶级数可以表示为:
F(x) = a0/2 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + ...+ an cos nx + bn sin nx + ...
理论波形与实际波形的比较
一些波形比较简单,比如单纯的正弦波,但是这些只是理论上的。在实际生活中,大多数波形都包含谐波频率(最小频率或基波频率的倍数)的能量。谐波频率能量相较于基波频率能量的比例是依赖于波形的。傅立叶级数将这种波形数学的定义为相对于时间的位移函式(通常为振幅、频率或相位)。
随着傅立叶级数中计算的项的增加,级数会越来越近似于定义複杂信号波形的精确函式。计算机能够计算出傅立叶级数的成百上千甚至数百万个项。
收敛性
充分条件
傅立叶级数的收敛性:满足狄利赫里条件的周期函式表示成的傅立叶级数都收敛。
狄利赫里条件
狄利赫里条件如下:
在任何周期内,x(t)须绝对可积;
在任一有限区间中,x(t)只能取有限个极值点;
在任何有限区间上,x(t)只能有有限个第一类间断点。
吉布斯现象
在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和X(t),那幺X(t)在这些点上会有起伏。一个简单的例子是方波信号。
三角函式形式
三角函式族的正交性
所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧氏空间中,互相垂直的向量之间是正交的。事实上,正交是垂直在数学上的的一种抽象化和一般化。一组n个互相正交的向量必然是线性无关的,所以必然可以张成一个n维空间,也就是说,空间中的任何一个向量可以用它们来线性表出。
傅立叶级数的三角函式表达形式
设f(t)为一非正弦周期函式,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函式,一般都满足狄里赫利条件,所以可将它展开成傅立叶级数。即
其中A0/2称为直流分量或恆定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关係的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恆定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函式可以表示一个直流分量与一系列不同频率的正弦量的叠加。
上式有可改写为如下形式,即
当A0,An, ψn求得后,代入式 (10-2-1),即求得了非正弦周期函式f(t)的傅立叶级数展开式。
把非正弦周期函式f(t)展开成傅立叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函式大约有十余种,它们的傅立叶级数展开式前人都已作出,可从各种数学书籍中直接查用。
从式(10-2-3)中看出,将n换成(-n)后即可证明有
a-n=an
b-n=-bn
A-n=An
ψ-n=-ψn
即an和An是离散变数n的偶函式,bn和ψn是n的奇函式。
复指数形式
表达形式
将式(10-2-2)改写为
可见 与 互为共轭複数。代入式(10-2-4)有
上式即为傅立叶级数的复指数形式。
下面对和上式的物理意义予以说明:
由式(10-2-5)得的模和辐角分别为
可见的模与幅角即分别为傅立叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的複数振幅。
的求法如下:将式(10-2-3a,b)代入式(10-2-5)有
上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即
即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。
在(10-2-7)中,由于离散变数n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。
优点
引入傅立叶级数复指数形式的好处有二:
(1)複数振幅同时描述了第n次谐波的振幅An和初相角ψn;
(2)为研究信号的频谱提供了途径和方便。
傅立叶级数
傅立叶係数
傅立叶係数包括係数 ,积分号和它的积分域,以及里面的两个周期函式的乘积——其中一个是关于f的,另一个是关于x的函式f(x),另一个则是和级数项n有关的三角函式值。这个三角函式可以是正弦,也可以是余弦,因此傅立叶係数包括正弦係数和余弦係数。其中当n=0时,余弦值为1,此时存在一个特殊的係数 ,它只与x有关。正弦係数再成一个正弦,余弦再乘一个余弦,相加并且随n求和,再加上一半的 ,就称为了这个特别的函式f(x)的傅立叶级数。为什幺它特别呢,我想因为这里只有它只限于一个周期函式而已,而级数的周期就是f(x)的周期,2 。
如果函式f(x)存在一个周期,但是不是2 了,而是关于y轴对称的任意一个範围,它还能写成傅立叶级数幺?也可以的。只要把傅立叶係数里的 换成l,并且把积分号里的三角函式中的n 下除一个l,同时把係数以外的那个n 底下也除一个l。其他的都不动。也可以认为,2 周期的傅立叶级数其实三角函式中x前面的係数应该是 ,其他的 (积分域和係数)应该是x,只不过这时所有的l都是 罢了。
前面提及了,周期或是积分域,是关于y轴的一个任意範围。其实周期函式不用强调这个,但是为什幺还要说呢?因为要特彆强调一下定义域是满的。有些函式的定义域不是满的,是0到l,当然这样它有可能不是周期的。这些函式能写成傅立叶级数幺?同样可以。而且,它的写法不再是正弦和余弦函式的累积,而是单独的一个正弦函式或是余弦函式。具体怎幺写,就取决于怎幺做。因为域是一半的,所以自然而然想到把那一半补齐,f就成了周期函式。补齐既可以补成奇函式也可以补成偶函式。补成积函式,写成的级数只有正弦项,即 为0。补成偶函式,写成的级数就只含有余弦项和第一项,即 为0。而,傅立叶係数相比非积非偶的函式要大一倍。
其实,如果不经延拓,上面那些对于奇偶函式同样使用。
在做题时,常常看到级数后面跟着一个係数还有一个正弦函式,然后后面给出了这个係数很複杂的一串式子,这时候就容易突然短路了。但是如果再定睛一看,会发现其实那个係数不过是一个有积分的傅立叶係数而已。那幺一大串,应该看什幺呢?应当先看积分域,一下就可以定出周期了。第二步要明确级数和函式的关係即等价关係。函式不但包含在级数中,而且函式本身也是和级数等价的。但一般那个级数里的函式是一个摆设,不起什幺作用。
傅立叶变换
傅立叶变换能将满足一定条件的某个函式表示成三角函式(正弦和/或余弦函式)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
傅立叶变换属于谐波分析。
傅立叶变换的逆变换容易求出,而且形式与正变换非常类似。
正弦基函式是微分运算的本徵函式,从而使得线性微分方程的求解可以转化为常係数的代数方程的求解。线上性时不变的物理系统内,频率是个不变的性质,从而系统对于複杂激励的回响可以通过组合其对不同频率正弦信号的回响来获取。
卷积定理指出:傅立叶变换可以化複杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段。
离散形式的傅立叶变换可以利用数字计算机快速的实现(其算法称为快速傅立叶变换算法(FFT))。