1832年,切比雪夫全家迁往莫斯科。为了孩子们的教育,父母请了一位相当出色的家庭教师П. H. 波戈列日斯基(Погорелский),他是当时莫斯科最有名的私人教师和几本流行的初等数学教科书的作者。切比雪夫从家庭教师那里学到了很多东西,并对数学产生了强烈的兴趣。他对欧几里得(Euclid)《几何原本》(Elements)当中关于没有最大素数的证明留下了极深刻的印象。
大学时代
1837年,年方16岁的切比雪夫进入莫斯科大学,成为哲学系下属的物理数学专业的学生。在大学阶段,摩拉维亚出生的数学家H. Д. 布拉什曼 (Брaшмaн) 对他有较大的影响。1865年9月30日切比雪夫曾在莫斯科数学会上宣读了一封信,信中把自己套用连分数理论于级数展开式的工作归因于布拉什曼的启发。在大学的最后一个学年,切比雪夫递交了一篇题为“方程根的计算” (Вычисление корней урaвнений, 1841) 的论文,在其中提出了一种建立在反函式的级数展开式基础之上的方程近似解法,因此获得该年度系里颁发的银质奖章。
大学毕业之后,切比雪夫一面在莫斯科大学当助教,一面攻读硕士学位。大约在此同时,他们家在卡卢加省的庄园因为灾荒而破产了。切比雪夫不仅失去了父母方面的经济支持,而且还要负担两个未成年的弟弟的部分教育费用。1843年,切比雪夫通过了硕士课程的考试,并在J. 刘维尔 (Liouville) 的《纯粹与套用数学杂誌》(Journal des mathématiques pures et appliquées)上发表了一篇关于多重积分的文章。1844年,他又在L. 格列尔 (Grelle) 的同名杂誌 (Journal für die reine und angewandte Mathematik) 上发表了一篇讨论泰勒级数收敛性的文章。1845年,他完成了硕士论文“试论机率论的基础分析” (Опыт елементaрногоaнaлизa теории вероятностей, 1845) ,于次年夏天通过了答辩。
执教彼得堡
1846年,切比雪夫接受了彼得堡大学的助教职务,从此开始了在这所大学教书与研究的生涯。他的数学才干很快就得到在这里工作的B. Я. 布尼亚科夫斯基 (Буняковский) 和M. B. 奥斯特罗格拉茨基 (Острогрaдский) 这两位数学前辈的赏识。1847年春天,在题为“关于用对数积分” (Об интегрировaнии с номошьюлогaрифмов, 1847) 的晋职报告中,切比雪夫彻底解决了奥斯特罗格拉茨基不久前才提出的一类代数无理函式的积分问题,他因此被提升为高等代数与数论讲师。他在文章中提出的一个关于二项微分式积分的方法,今天可以在任何一本微积分教程之中找到。1849年5月27日,他的博士论文“论同余式”(Теория срaвнений, 1849)在彼得堡大学通过了答辩,数天之后,他被告知荣获彼得堡科学院的最高数学荣誉奖。切比雪夫于1850年升为副教授,1860年升为教授。1872年,在他到彼得堡大学任教25周年之际,学校授予他功勋教授的称号。1882年,切比雪夫在彼得堡大学执教35年之后光荣退休。切比雪夫
35年间,切比雪夫教过数论、高等代数、积分运算、椭圆函式、有限差分、机率论、分析力学、傅立叶级数、函式逼近论、工程机械学等十余门课程。他的讲课深受学生们欢迎。A. M. 李雅普诺夫 (Ляпунов) 评论道:“他的课程是精练的,他不注重知识的数量,而是热衷于向学生阐明一些最重要的观念。他的讲解是生动的、富有吸引力的,总是充满了对问题和科学方法之重要意义的奇妙评论。”
切比雪夫是在机率论门庭冷落的年代从事这门学问的。他一开始就抓住了古典机率论中具有基本意义的问题,即那些“几乎一定要发生的事件”的规律——大数定律。历史上的第一个大数定律是由雅格布·伯努利(Bernoulli, Jacob I)提出来的,后来 S-D.B.泊松(Poisson)又提出了一个条件更宽的陈述,除此之外在这方面没有什幺进展。相反,由于有些数学家过分强调机率论在伦理科学中的作用甚至企图以此来阐明“隐蔽着的神的秩序”,又加上理论工具的不充分和古典机率定义自身的缺陷,当时欧洲一些正统的数学家往往把它排除在精密科学之外。
1845年,切比雪夫在其硕士论文中藉助十分初等的工具——ln(1+x)的麦克劳林展开式,对雅格布·伯努利大数定律作了精细的分析和严格的证明。一年之后,他又在格列尔的杂誌上发表了“机率论中基本定理的初步证明”(Démonstration èlèmentaired’une proposition génerale de la théorie des probabilités, 1846)一文,文中继而给出了泊松形式的大数定律的证明。1866年,切比雪夫发表了“论平均数”(Oсредних величинaх,1866),进一步讨论了作为大数定律极限值的平均数问题。1887年,他发表了更为重要的“关于机率的两个定理”(Oдвух теоремaх относительно вероятностей,1887),开始对随机变数和收敛到常态分配的条件,即中心极限定理进行讨论。
切比雪夫引出的一系列概念和研究题材为俄国以及后来苏联的数学家继承和发展。A.A.马尔科夫(Мaрков)对“矩方法”作了补充,圆满地解决了随机变数的和按正态收敛的条件问题。李雅普诺夫则发展了特徵函式方法,从而引起中心极限定理研究向现代化方向上的转变。以20世纪30年代A.H.柯尔莫哥洛夫(Колмогоров)建立机率论的公理体系为标誌,苏联在这一领域取得了无可争辩的领先地位。近代极限理论——无穷可分分布律的研究也经C.H.伯恩斯坦(Бернштейн)、A.Я.辛钦(Хинчин)等人之手而臻于完善,成为切比雪夫所开拓的古典极限理论在20世纪抽枝发芽的繁茂大树。关于切比雪夫在机率论中所引进的方法论变革的伟大意义,苏联着名数学家柯尔莫哥洛夫在“俄罗斯机率科学的发展”(Роль сусской нaуки в сaзвии теории вероятносгей,ИБИД,стр,53—64)一文中写道:“从方法论的观点来看,切比雪夫所带来的根本变革的主要意义不在于他是第一个在极限理论中坚持绝对精确的数学家(A.棣莫弗(de Moivre)、P-S.拉普拉斯(Laplace)和泊松的证明与形式逻辑的背景是不协调的,他们不同于雅格布·伯努利,后者用详尽的算术精确性证明了他的极限定理),切比雪夫的工作的主要意义在于他总是渴望从极限规律中精确地估计任何次试验中的可能偏差并以有效的不等式表达出来。此外,切比雪夫是清楚地预见到诸如‘随机变数’及其‘期望(平均)值’等概念的价值,并将它们加以套用的第一个人。这些概念在他之前就有了,它们可以从‘事件’和‘机率’这样的基本概念导出,但是随机变数及其期望值是能够带来更合适与更灵活的算法的课题。”
1856年,切比雪夫被任命为炮兵委员会的成员,积极地参与了革新炮兵装备和技术的工作。他于1867年提出的一个计算圆形炮弹射程的公式很快被弹道专家所採用,他关于插值理论的研究也部分地来源于分析弹着点数据的需要。他在彼得堡大学教授联席会上作的“论地图製法”(Черченйе геогрaфических кaрт,1856)的报告精闢地分析了数学理论与实践结合的意义,这份报告也详尽讨论了如何减少投影误差的问题。在法国科学院第七次年会上,切比雪夫提出了一篇名为“论服装裁剪”(Sur la coupe des vte-ments,1878)的论文,其中提出的“切比雪夫网”成了曲面论中的一个重要概念。