
土(科学术语)
土是地壳表面最主要的组成物质,是岩石圈表层在漫长的地质年代里,经受各种複杂的地质作用所形成的鬆软物质。土壤和母质层的区别表现在于形态、物理特性、化学特性以及矿物学特性等方面。由于地壳 、水蒸气、 大气和生物圈的相互作用,土层有别于母质层。 它是矿物和有机物的混合组成部分,存在着固体,气体和液体状态。疏鬆的土壤微粒组合起来,形成充满间隙的土壤。这些孔隙中含有溶解溶液(液体)和空气(气体) 。因此,土壤通常被视为有种个状态 。大部分土壤的密度为1~2 g/cm³。土壤在英文中也被称为“地球”——我们所居住的星球的名字,也是它的本质。地球上只有很少的土壤成分的生成年代早于第三纪,大多数不会早于更新世。
基本介绍
- 中文名:土
- 外文名:soil
- 别称:土壤
- 类别:矿物和有机物组成的混合物
- 颜色:土黄色、深褐色为主
- 透明度:不透明
- 晶体惯态:固态、液态
- 分布:世界各地的陆地上
基本特徵
①土与岩石一样是自然历史产物。土的性质由其地质成因、形成时间、地点、环境、方式,以及后生演化和现时产出的条件决定。如乾旱区形成的黄土,湿热区形成的红土,静水区形成的淤泥,它们在性质上截然有别。
土性质

②土是由固、液、气体多相组成的体系。固相是土的主要成分,称为土的骨架。土颗粒间的孔隙可被液体或气体充填。完全被水充满时,形成二相体系的饱水土,性质柔软;完全被气体充满时,则形成二相体系的乾土,其性质有的鬆散,有的坚硬。土的孔隙中有液、气体共存时,则形成湿土,其性质介于饱水土和乾土之间,属三相体系。土中各相系组成的质和量,以及它们之间的相互作用是控制土的工程性质的主要因素。③土是分散体系。根据土颗粒的大小(分散程度),土可分为粗分散体系(粒径大于2微米),细分散体系(粒径2~0.1微米),胶体体系(粒径0.1~0.01微米),分子体系(粒径小于0.01微米)。土的工程性质随着分散程度的变化而改变。④土是多矿物组合体。一种土含有5~10种或更多的矿物,其中次生矿物是主要成分。土遇水产生胶体化学特性,土粒间形成受结合水控制的特殊联结。这是促使粘土产生複杂性质的根本原因。
物质成分
一般包括粒度成分、矿物成分和液相成分。
①粒度成分。土粒按粒径大小及其性质的近似性归併成粒组,用各粒组占总土重的百分数表示土的粒度成分。粒度分析结果用累积曲线图和分布曲线(柱状)图(图1、2)表示。据累积曲线可图解出d10、 d30、d50、d60等特徵粒径值。d10为有效粒径,累积百分含量为10%的粒径,是土的有代表性的粒径,常用于计算潜蚀、透水性和毛细管性的经验公式中;d50为平均粒径,指累积含量为50%的粒径;d30、d60为限制粒径,指累积含量分别为30%和60%的粒径。此外,不均匀係数Cu=d60/d10和曲率係数 也是表示粒度成分的定量指标。分布曲线图中具有一个较窄的峰者,称单分散土;具有两个峰者,称双分散土;峰多而平缓者,称多分散土。
土性质
土性质


②矿物成分。土中的粗碎屑颗粒多由石英、长石、云母等原生矿物组成。原生矿物经风化,可溶物被溶蚀后形成不溶于水的次生矿物。其颗粒很细小(小于0.001毫米),是构成粘土的主要成分,故称粘土矿物。主要代表性粘土矿物是高岭石、蒙脱石和伊利石。它们的比表面积大、阳离子交换吸附能力强,是控制粘性土产生塑性、膨胀性、收缩性等特殊性质的主要因素。
③液相成分。土中的液相成分通常不全是自由水。根据水分子的活动性可分为毛细管水、结合水、结构水等类型。结合水是土粒与水发生複杂物理-化学作用的产物。土粒表面常分布有具游离电价的原子或离子,它们能吸引极性水分子形成水化膜。在水化膜中直接与土粒相接触,并牢固被吸引的水称吸附结合水(强结合水)。远离颗粒表面的水构成浓差渗透吸附结合水(弱结合水)。结合水形成的形式如图 3。强、弱结合水构成土粒表面双电层的反离子层,其中弱结合水大体相当于扩散层。结合水的发育是决定粘性土工程性质的主要因素。土中存在一定数量的可溶盐(NaCl、Na2SO4、CaCl2)。土中的水是水溶液。粘土胶粒从介质水溶液中吸附和交换分子、离子的能力称土的吸附能力。吸附有物理吸附(无极性吸附)和物理-化学吸附(极性吸附)。后者对土的工程性质的形成和演化有重要影响。在自然条件下,土粒表面荷负电,故阳离子吸附最普遍。吸附阳离子可与其他阳离子按化学当量进行离子交换。 100克乾土能吸附阳离子的最大量称交换容量,以毫克当量表示。粘土胶体通常呈两性胶体,在等电点以下荷正电,将吸附交换阴离子(Cl、PO婯等),在富含铝及水铝英石的粘土中常见此种情况。
结构特徵
土的结构是土的存在形式,是土中矿物颗粒的相互关係。土的结构特徵除土颗粒的大小、形状、表面特性及粒度级配特徵外,还包括颗粒间的排列与集合关係,孔隙的大小,颗粒间联结的特点等。
土

土的结构类型有下列几种:
①散粒结构,为粗粒土所特有。其特点是土粒大、比表面积小、粒间无结构联结,只靠重力相互堆砌而成。按排列程度又可分为疏鬆与緻密两种。经洪水快速搬运堆积的砂土易于形成疏鬆结构。其特点是孔隙度高,经动荷载作用后易产生压密变形。海岸带磨圆度好的砂多具緻密结构。其特点是孔隙度低,经动、静荷载作用均不易产生重大变形。
②团聚结构,为粘性土特有。其特点是粘土粒子很少单独存在,而是彼此结合成团聚体。按粒度和团聚体排列的形式此类结构又可分为蜂窝状、骨架状、基质状、紊流状、层流状、畴状、伪球状和海绵状等8种类型(图4)。前 5种为沉积粘土的典型结构,后3种则为残积或热液成因粘土的典型结构。蜂窝状结构是静水环境中新近沉积粘土的典型结构。它的特点是孔隙度大(60~90%),湿度高(55~300%),强度低,压缩性强和各向同性。骨架状结构比蜂窝状结构密实,富含粉粒(40~60%),且多处于粘粒包裹之中,具触变性。基质状结构以粘粒团聚体为基底,粉砂粒镶嵌其中,具弱、中等压密性,是沖积土的典型结构。紊流状结构系蜂窝状结构或基质状结构经成岩压密形成的,具明显各向异性,各向异性剪下係数达2.5。在已固结的海积粘土中常见层流状结构,淡水湖相粘土经后生成岩压密,亦可有这种结构,它比紊流状结构的定向程度更高。畴状结构是残积高岭土的典型结构,与长石风化密切相关,在花岗岩风化土中最常见。伪球状和海绵状结构是热液成因粘土的代表结构。
物态特徵
由于土的各物质组成之间的比例和排列不同而表现出的土的轻重、乾湿和松密等自然属性。表征土的物态特徵的指标如下:
①土粒密度,土中固体颗粒的质量与其体积之比,即土粒的单位体积的质量;
土性质

②天然密度,天然状态下,土的总质量与总体积之比;
③乾密度,土的孔隙中完全没有水时,土的单位体积的质量;
④含水率,土中所含水分的质量与固体颗粒质量之比,常以百分数表示;
⑤孔隙率:土的孔隙体积与土的总体积之比,常以百分率表示;
⑥孔隙比,土的孔隙体积与土粒体积之比,常用小数表示;
⑦饱和度,土的孔隙中水的充填度,即土中水的体积与孔隙体积的百分比值。
土的分类
地壳上的土,种类繁多,为便于研究与实际套用,可按土的工程性质近似地归类,粒度组成一直是土的分类的基本依据。世界上几个国家的土的粒组界限值见表。
按粒度,土首先分为颗粒直径大于0.074毫米者占 50%以上的粗粒土和颗粒直径小于0.074毫米者占50%以上的细粒土,粗粒土再细分的标準仍是粒度组成,颗粒直径大于 2毫米者占50%以上的为砾石类土,否则为砂类土。但细粒土的性质与粒度的关係不如其与水的关係密切,故世界各国普遍採用塑性指标作为划分细粒土的标準。分类方法是将实际测得的塑性指标值点在塑性图上,据其位置归类。此外,还有以地质成因或矿物成分为划分标準的分类法。
水理性质
土的水理性质一般指的是粘性土的液限、塑限(由实验室测得)及由这两个指标计算得来的液性指数和塑性指数。这几个指标也是工程中必需提供的。对于饱和粘性土还有灵敏度和触变性。
粘性土由于含水量的不同,分为固态、可塑状态和流动状态,这即是粘性土的稠度状态。各稠度状态间的临界含水量称界限含水量,界限含水量随粘粒含量和矿物成份的不同变化较大,也反映出工程地质性质的显着差别。因此界限含水量及界限含水量与天然含水量的关係,即塑性指数和液性指数,往往作为土的分类和确定地基承载力的重要参数。
天然状态下的粘性土具有一定的结构。当受到外来因素的扰动时,土粒间的胶结物质以及土粒、离子、水分子所组成的平衡体系受到破坏,土的强度降低和压缩性增大。土的结构性对强度的这种影响,一般用灵敏度来反映。